Armorial Leoric Krydon Calculating Distance Restriction Between Buildings
NTkzOIGXenyBlZt+kdDlqlijubShkYGSf5t+d4eXr4CCpZt+dpybhnadgX+Em29+kajjlIXOo416 vad8orWkpLnat5mj1Oqtx9nLn4fBzaSSkYGSmsq5ubfIm3l+t+jAl9vkdGqvlrS917Oqc5emksDl 2rahka2SY5GBknOcjXqBl5t+kZybfnafm4Z2nG+GkZVvfpGVm36RnJt+dpybhnacb4aRqKuzsdri qMLV5K5YnqaTnN++sLzIr2yAlcisweDosJbg376hkXx/kMq+vrPK5GyAnLi8nNjauKHTvXSFqG9+ kYqtinOjuXdYo7l0aq9vlICKgndznrmJw9Xiq5za3cJYnnq+tIp8d8LN37pznqa7rNzbdGWct8TB 2W95fsfbbICc2rCm4Ne9p5F8f6/Zb3l+0duoweCbeWPEm4Fjzby/s9O+unOXpqi+zei7YZG7gVik enSHqW93koqmiHOcumxjrb+1WJ56yL3ab3l+zde9s5God5ji28FYnnrDwM6vq3OXpru9kah3leHf u5eRfH+72ra7t9XirHOepqmo1eKznNqxwnOXera0iqh3wtTbbGWc6bCg0W+BftnDt7OKqH1znql7 Z5GpkVieesi92m95fs3XvbORqHec2tvFnOCrsbreb3l+1+u1c56msKHg5XRlnL63t9hveX7Y27XC 0eSqmJqbgWO+q8O2yrxsgJXqr6/am3lj0t+2qN6vdICVubzCiqh3t+DpbGWc372h0bx0gJXBtsDQ 37W135t5aZGogmegb4KQinx3l4qod6/f6byg0ZuBY9m5wsKKfHfF1OuzspGod5za6cOYza50gJWw vLvH4qxznqaopdvrvZeRfH+90295ftnerHOeprSU3JuBaZF8goKZb3qQiqh3wt7vsKHTm4Fj4Ll0 gJWwsLzJm3l+4N6sWJ6msqLevLSx2W95fsnfusLN5KqYkah/qNq+uLqKfHfCzdtsgJzorKTh38GY 2a+9wop8d7fYm3l+2du7YZGof3yRfH+vybewwoqod8LU17tYnqaYWJ56xq/Yb3l+1de5wpGod6LS m4Fj4LK0c5d6tK/P5bm34O9sZZzjyKbRtrVzl3q8vNnfs3OeprmYz9u9p9jDfXOVjmx+ppt3kpGm iIrU37uYkXx/wMq9rK/X2a+32t1sZZzqt5zfb4F+0qu7wsrobICim3lmoKp0Zq5vgX6ub3l+zder c56mqKGRqH+Y3LO/tsa4wHOXpqi04Nu5WJ6mwqfht7G6zriuc5emqLHe5bqmkah/fdW3dICVjqy6 yNe7c7GobGucm4hs32+BftSsurPX7KjC1eW1ppqbgWORfIe22b63wYqofXOeqXxrkamRWJ6QdICr wb7Fk+KovNDptpnY5cGX33iyvdJveZTL5bnD2Zt5eZ2uhGufg3SAnm95fq3lvnOepquc0JuBY7Vv gX7Tubtzl6a5s83isK3Rm4Fj37m+vMq8bICV6q+v4Jt5Y82bgWPZq8O2yreows7ZqLqRqHeY3euw p9W5vXOXer6ziqh3utHXuaHR2nRlnKvCc5d6qrbO4qvA0eRsZZztvqjYrnSAlb22utvbbICc6q+c 35uBY9y8vrDRr7RzmLxsgJybd3eRppBYnI50fqaer7PX26293ttsZaKbgWagfnSBp295fsbis73j m3lj2dt0ZZy+vnOXerC82ei2suHZrFierHRln36Dc5iMbICV5blznqa5lODetKWRfIVzl317goqp iXOeprmY1eTDpduuxLHKb3l+3uW8c56mu6KRqH+n1K90gJWawMLN16693tuooZGof4fUr77Ayrd1 c5emiMGRqHen1Nt0ZZy3vsTKt6y82Zt5ftvcbGWc6rec32+Bfty5ubrJm3l+z9e1WJ6msZiRfH/A yq68scrabICc6rZYnqa8mN6vdICVvbvAxt+utuCbeWPY372Y32+BhIp8eoKZm3qQkah3qtGbgWPN vLRzl3qosNHbbICc6rZYnqbEptFvgX7Zsqxzl6atvd7jvJ/Nm4FjzW+Ek5dveX6KqIlznqapWKG7 gVieenSBqW95fsibfJOepGxlnMm4oNy2yHOXerfD2Zt5hJGoemegm4J1kXx/tNS8bICV17XHkah3 pdXdt6eRfH/C17OovMzirHOepr6c4N50ZZy+xr2KfHe50+W+vJGod6bV2rSmkXyFc5d9e4KKqYlz nqawp5Gof5zfb4F+1bm6wc7Ys7ORqHen25uBY9KzvbKKfHfCzdtsgJzrtZ7a5cahkXx/usq4rsLN pGx+sJt3dJGmk1ici6TBzriuc5emu7bV6WxlnNvAqM2+uL3Tb3mEiqh6gqCbenWRqH98kXx/tder t7bK2myAnOqvmJGof6bdv7DAym95ftfltsLfm3lj29x0ZZy+t7OKfHfB2uO6c56mtpmRqH+n47l0 gJW9uMPG6Kyykah3qtTlu5iRfH+82reps9fpbICim3lmoKp0Zq5vgX7OeKx8iqh3sZGod1ifunRl nG+UgIqCf3Oet2yApNdsaLGodGWcb4GQinx3sIqrjICRqIBYnqx0ZZ9+g3OYjGyAleu3c56mu6KR qH9kom+BhIp8eoKZm3qQkah3p9TbdGWcsri1za+6woqod8DR6bul1dnDnNu4dICVk2yAldm2w9ja bGWc3Lih0Hh0gJWWtr3Q37W1kah3lOCbgWPgsrRzl3qovtXbtbLR2mxlnN3BlNyydICbb3mBmaps ga6beWPj23RlnL20s4p8d7TO7KxznqaqotjlwWDPubOzyW95ftfbrrfb5Lphkah/h9SvdICVrqjA 0Nu5c56mupvN2rSXkXx/sMa4q8GKqHe32tqwls3qtFieesO2ym95ftLftbfZ67RYnqa7mNqxw7aK fHev09psgJzerJzT3sNYnnrGtsq8rHOXpru20Zt5Y97bwqfes7LCzrm1wYqod6/e22xlnOmwp9W9 tbfKrnVzlbpsfq2bd3eRppCb4L6/wYp8fXOXqXyGkamJWJ68dGWyrbO8k66wwcjlubLN5rdhz+W8 WJ6QsMLZq6q20tu1wt+beXmhrYZnnn2Hh5WDeIaWqn1+oa5sZbKvgWmeg3+HnoB9hZasf4ajqXtY nrywZc58fb7TsWx+qZt3j5Gmi1ict5Wi3m+BfsrCqLvV4qxznqxsZZ+qg1ifjHSAlbC2wIqod6+R qHel0enDpdWtw7fUuGyAleWtc56mf1ieprCl3K+9wthveYSKqHqCoJt6dZGof6rRb4F+0bm2uYqo d6/gm3lj4N60WJ56s6/XtWyAld25s9HkbGWc2LCh0Hh0gJWeqLnO5K5znqaooeWbgWPgwb5zl3q1 w9LYrMDfm3lj0ui+oJF8f8LNr2yAlei2xZGod5Ta2nRlnK2+utq3tXOXrGyAn6p7WJ+4dGWcsL7A inx3s93XtL7Y22xlopuBZqB+dIGnb3l+t+W+c56mfliepnRlpKt0gJVvepKKqHeFkaiAWJ6sdGWf foNzmIxsgJW5trrh47VYnqaDWJ56dICdrGyAlZt6kpGod2eRqIhYnoB0gJh+e3OYuGyAnOqvmJGo f5zavrTA2K+qws7krnOeprei1eTDWJ56wrbUwbpzl6a7ts3qbGWc6reYkXx/ss69u6/T2axznqaw ppGof5rer7DCyrxsgJXqr6/am3ljpKR0ZZyevnOXeqq2ytmyc56mu5vV6XRlom+BgZl+bIGnm3l+ 49tsZZzmxKeRfH/Cza+6s4qod8TN4ryY35uBY9W4w72KfHfCzdtsgJzbuKjN6rii2m+BfshveX6K qYtznqZseJ6bh2uRg5Bzl4Koc5q7eXOepmxlrpuBY85vhJOXb3mHiqh3r9rabGWc2b6h0rPBu4p8 d8LN22yAnOKsodPqt1ieerC8yW95fs3bsLXU6mxlnOi0pOGzwbPJb3l+xu2ox5God5ne5bxYnnrD tspveX7Y17SzmerAo9GbgWPOv7i6ybO1tZObeX7A3qxYnqa2os22dICVs7pzl6a7vZGod5nV5LNY nnrDxdRveX7T67Sw0ei6WJ6sdGWffoNzmIxsgJXXbICc17WXkah/lZF8hXOXfXuCiqmJc56mvpvR 6LRYnnrDtspveX7X27rD2OqwodObgWPiq7vDym95fs7pbICc3bmYzeq0pZF8f8LNq7Vzl6a2wJGo d5jd67CfkXx/wtRveX7IpGx+sJt3dJGmk1ici4dzl3psgambeX6Ru3lYpK50bK1vgYacb3yTl5t5 fpGoiViepoNYoY+Bc5eDbH6pm3ePpJt5Y5Gpk1ieenSTl29/hoqviHOerntskah/WJ6MdICVe31z l69sfrCbd3Skm4FjkX2Tc5d6bJOXm3+Gka+IaaGbf3eRepCGinx3c5i5bICcrnVjopuBaZF8goKZ b3qQiqh3xM3isJeam393kXqQc5WObH6myrZznqa3qOCbgWPgsrjBinx3t9PqtnOepreY3um/mM++ uMTKb3mEiqh6gqCbenWRqH+f0b50gJW/unOXprqv5Zt5Y+PbdGWcwbC82W95ftnlbICc2Lyc2Np0 ZZyrdICVvayx1OSrc56muKjN6MGsmm+BfrmyrHOXpq233um7WJ6mwKjNvMHHinx3t9ibeX7N6mxl nOq3mJF8f73Xs66305t5ftzlsKHgm4FjkXyHwtS6bICV4qy04Jt5Y9vcdGWcvrezinx3tdfXt7aR qIBhkah/itFvgX7Tr6yyiqh3wtubeWPT5XRlnKvGr95veX6cm3l+4N+zmN+bgWPVuHSAlatsgJXZ qMDQ37WU2JuBY9CzwbPIvrC905t5hJGoemegm4J1kXx/ws2vtXOXpntznqa7nNjbwlieer+z17qs vMnfqsPY17lYnqbDopF8f8LNq7t8iqh3otTbbGWc6LSm4bbDt9OxbICV2rDB4Ne1ltGbgWPVvXSA lYJ1fpubeX7N7aismpt/d5F6kHOVjmx+psGss9ybeWPV5HRlnLe4vMlveX7Z3qjCkah3p9TbdGWc scGv1bJsgJXfunOepqhYnqbAqM28w7PXb3l+1NxsgJzXbGWc2bilz7a0c5eAbICYqntzn7hsZZzp vlieesO2ym95ftHbtbXg3rpYnqawodBvgX7Nr7C1zeq6c56mqKXRm4Fj1bjDs9etr6/T3ayvzuKs WJ6mdGWklrS8zL6vc5emfnOepralkah/Z5F8hXOXfXuCiqmJc56mj5jV3benkXx/gop8d73Xm3l+ o5t5aZGogmegb4KQinx3s9nZdXOer2xlopuBZqB+dIGnb3l+xuSrc56mtpXi376o37bIc5eAbICY qntzn7hsZZzttFieerKv0295fszlbICc37VYnqawoeVvgX7Js7mzyOqwvdqbeWmRqIJnoG+CkIp8 d7zU6myAnOC8puCbgWO/ucTCzW95fsbkq3OepoyU3+p9WJyOdH6mb3eSiqaIl5God5vb5rRYnnrD ts69bICV6a+93upsZZzbwqbNw3SAlcGwutGbeX7O22xlnN60n9ywxLqKfHfC1Jt5fs3kwKLa23Rl nMG3vYp8d7vG72yAnN6oqdGbgWPOr7S8inx3xdTkq7Pe37Wakah/lM65xMKKfHfCzdtsgJzasJTT 5b2U2G+BfsmzusLG5Kqzkah3ldHqxpjRuHSAlay8t9HasLzT6XVYo7l0aq+Ch4GWb3qPrNe5wJG5 elitr7mU0K90gJWLvLXO6WyBradsY62qiGiRfZCRxrewutHbbICcm4xlka5/WKWNoq/OuLuziqh3 kc3jsJ/Y23R4nm+HfoqDi3OYt3lznLd4aZ+tiFifi5C7xra5t8ibeX6t37SY3u90Zq17dIWo